home *** CD-ROM | disk | FTP | other *** search
- /* specfunc/elljac.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- #include <config.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_sf_pow_int.h>
- #include <gsl/gsl_sf_elljac.h>
-
-
- /* See [Thompson, Atlas for Computing Mathematical Functions] */
-
-
- int
- gsl_sf_elljac_e(double u, double m, double * sn, double * cn, double * dn)
- {
- if(fabs(m) > 1.0) {
- *sn = 0.0;
- *cn = 0.0;
- *dn = 0.0;
- GSL_ERROR ("|m| > 1.0", GSL_EDOM);
- }
- else if(fabs(m) < 2.0*GSL_DBL_EPSILON) {
- *sn = sin(u);
- *cn = cos(u);
- *dn = 1.0;
- return GSL_SUCCESS;
- }
- else if(fabs(m - 1.0) < 2.0*GSL_DBL_EPSILON) {
- *sn = tanh(u);
- *cn = 1.0/cosh(u);
- *dn = *cn;
- return GSL_SUCCESS;
- }
- else {
- int status = GSL_SUCCESS;
- const int N = 16;
- double a[16];
- double b[16];
- double c[16];
- double phi[16];
- double psi[16]; /* psi[i] := phi[i] - Pi 2^{i-1} */
- double two_N;
- int n = 0;
-
- a[0] = 1.0;
- b[0] = sqrt(1.0 - m);
- c[0] = sqrt(m);
-
- while( fabs(c[n]) > 4.0 * GSL_DBL_EPSILON) {
- a[n+1] = 0.5 * (a[n] + b[n]);
- b[n+1] = sqrt(a[n] * b[n]);
- c[n+1] = 0.5 * (a[n] - b[n]);
- if(n >= N - 2) {
- status = GSL_EMAXITER;
- c[N-1] = 0.0;
- break;
- }
- ++n;
- }
-
- --n;
- two_N = (double)(1 << n ); /* 2^n */ /* gsl_sf_pow_int(2.0, n); */
- phi[n] = two_N * a[n] * u;
- psi[n] = two_N * (a[n]*u - 0.5*M_PI);
-
- while(n > 0) {
- const double psi_sgn = ( n == 1 ? -1.0 : 1.0 );
- const double phi_asin_arg = c[n] * sin(phi[n])/a[n];
- const double psi_asin_arg = c[n]/a[n] * psi_sgn * sin(psi[n]);
- const double phi_asin = asin(phi_asin_arg);
- const double psi_asin = asin(psi_asin_arg);
- phi[n-1] = 0.5 * (phi[n] + phi_asin);
- psi[n-1] = 0.5 * (psi[n] + psi_asin);
- --n;
- }
-
- *sn = sin(phi[0]);
- *cn = cos(phi[0]);
- {
- /* const double dn_method_1 = *cn / cos(phi[1] - phi[0]); */
- const double dn_method_2 = sin(psi[0])/sin(psi[1] - psi[0]);
- *dn = dn_method_2;
- /* printf("%18.16g %18.16g\n", dn_method_1, dn_method_2); */
- }
-
- return status;
- }
- }
-
-